1. Determine el valor de la constante K de manera que el siguiente sistema de ecuaciones no tenga solución. Exprese su respuesta con todas las cifras decimales que obtenga. el desarrollo del ejercicio, haz clic en la imagen a continuación:
miércoles, 2 de septiembre de 2015
Metodo de Ayuda Mutua | Método Matemático
Un número le ayuda a otro a convertirse, y el otro también le ayuda al uno; finalmente estos dos números terminan siendo iguales. Estos números se ayudan entre si mediante las operaciones de multiplicación únicamente
Vamos con un Ejemplo:
Tenemos los números 2 y 3:
- Si los multiplicamos entre sí:
2x3=6 >>> Ocurre que 2 ayuda a 3 a transformarse en 6.
3x2=6 >>> Ocurre que 2 ayuda a 3 a transformarse en 6.
Sabes, este método no es mas que la Propiedad Conmutativa de la multiplicación (El orden de los factores no altera el producto), pero lo he llamado así al método debido a la utilización en múltiples temas de matemáticas, en especial al resolver un sistema de ecuaciones por el método de reducción, en los cuales se tiene que igualar el valor de los términos que contienen la variable, la cual nos disponemos a eliminar.
Buen aprendizaje para tí! Si necesitas estudiar de una manera fácil, puedes encontrar mucho mas en "Matemáticas Fáciles Wix", un saludo!
viernes, 21 de agosto de 2015
La Multiplicación Y División de Números Enteros
¿Cómo multiplicar o dividir números enteros?
Para
multiplicar o dividir números enteros se
obtiene primero el signo y luego se multiplican o dividen los números.
La multiplicación se la identifica por el símbolo por (×), un punto (.),
paréntesis (()) o simplemente sin ningún símbolo. Nosotros usaremos el PARENTESIS.
Para
realizar multiplicación o división de números enteros debemos aplicar la ley de
signos:
La ley
de signos de la multiplicación y la división son iguales por lo que sabiendo
una sabemos ambas.
Ejemplos
En los ejercicios para obtener el signo resultante solo multiplicamos los signos negativos, o más bien contamos el número de signos negativos que hay. En el primer ejercicio el número de signos negativos que hay es impar, por ello el signo resultante es -, En el segundo ejercicio el número de signos negativos que hay es par, por ello el signo resultante es +.
jueves, 20 de agosto de 2015
Operaciones Con los Números Enteros | Suma y Resta
¿Qué es la Suma?
La suma es la adición de varias cantidades, mientras que la
resta es la sustracción de cantidades. La suma y la resta son opuestas entre
sí.
¿Cómo sumar números enteros?
Para sumar y restar números enteros se
procede así:
Si
tiene igual signo las cantidades se suman y se mantiene el signo.
Ejemplos:
Si
tienen diferente signo se restan y se mantiene el signo del mayor.
Ejemplos:
Sumas Y Restas de Números Enteros, Combinadas
Cuando
nos toque realizar varias sumas y restas en un mismo ejercicio convendrá:
Sumar todos los positivos por separado, sumar todos los negativos por separado
y luego restar ambas cantidades cumpliendo con las reglas antes dichas para
sumar y restar números. Ejemplo:
Números Enteros (Z)
NÚMEROS ENTEROS (Z)
Los números enteros son el conjunto de números formado por los Números Positivos (+), los Números Negativos (-) y el 0. Se los designa con el símbolo Z.
Las operaciones básicas que se realizan con los números enteros son: Suma, Resta, Multiplicación, División, Potenciación y Radicación.
Al realizar operaciones con números enteros se emplea la ley de signos.
La recta numérica: la recta numérica es la línea sobre la cual se representan el conjunto de los números enteros y también todos los reales.
En la recta numérica los números enteros están representados de la siguiente manera:
Para representar los enteros debemos escribir el entero cero en el centro de la recta, y a su izquierda van todos los negativos, mientras que a su derecha estarán los positivos.
Si nos damos cuenta en la parte de los positivos, siempre a la izquierda están los números menores y a la derecha los numero mayores. Podemos por ejemplo comparar ente el 1 y el 2, el número 1 está a la izquierda del 2 y el 2 está a la derecha del 1. Por ende 1 es menor que 2 y 2 es menor que 1.
lunes, 17 de agosto de 2015
Los Números: Definicion y Clasificación
Nos referimos a cantidad cuando
contamos un grupo de elementos, para ello estos tienen que ser de la misma
categoría. Por ejemplo: Podemos
contar en un árbol de manzanas cuantas hay, o el número de integrantes de una
familia, también objetos que hay en casa, y se cuenta el dinero que es la
cantidad más usada en nuestras vidas, en fin.
Clasificación de los
Números
Los números tienen su
clasificación en grupos o conjuntos. A su vez podemos encontrar una clasificación propia
para cada uno de los conjuntos, recuerda que van en orden de jerarquía, o sea
del más pequeño al más grande.
El primer conjunto de ellos lo aprendemos en nuestros primeros años de
estudio, es el conjunto de los números
naturales (N) que son todos los
positivos, de ahí viene el conjunto de
los números enteros (Z) que
abarca a los positivos y negativos más el cero, luego tenemos a lo racionales (Q)
que se refieren a las fracciones y luego a lo irracionales (I) que se
refiere a los números decimales
infinitos no periódicos, después están los
números reales (R) que
comprenden a todos los anteriores. En el grafico siguiente, vamos a ver una
clasificación de los números hasta el conjunto de los reales.
Aparte de los reales hay otro
grupo separado que son los números
Imaginarios (i), finalmente está
el conjunto de los número complejos(C) que abarca a los Reales y a los
Imaginarios.
En el siguiente gráfico se
muestra la claificación global de todos ellos, llegando hasta el gran conjunto
de los numeros complejos.
Suscribirse a:
Entradas (Atom)